August 1998 Revised March 2002

FAIRCHILD

SEMICONDUCTOR

74LCXR162245

Low Voltage 16-Bit Bidirectional Transceiver with 5V Tolerant Inputs/Outputs and 26 Ω Series Resistors in the Outputs

General Description

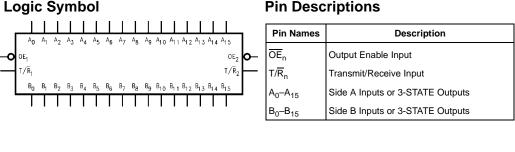
The LCXR162245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V or 3.3V) V_{CC} applications with capability of interfacing to a 5V signal environment. The device is byte controlled. Each byte has separate control inputs which could be shorted together for full 16-bit operation. The T/R inputs determine the direction of data flow through the device. The OE inputs disable both the A and B ports by placing them in a high impedance state.

In addition, all A and B outputs include equivalent 26Ω (nominal) series resistors to reduce overshoot and undershoot and are designed to sink/source up to 12 mA at $V_{CC} = 3.0V.$

The LCXR162245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- \blacksquare A and B side outputs have equivalent 26 Ω series resistors
- 5.3 ns t_{PD} max (V_{CC} = 3.3V), 20 μA I_{CC} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal (Note 1)
- Flow through pinout
- Implements patented noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA ■ ESD performance: Human body model > 2000V
 - Machine model > 200V

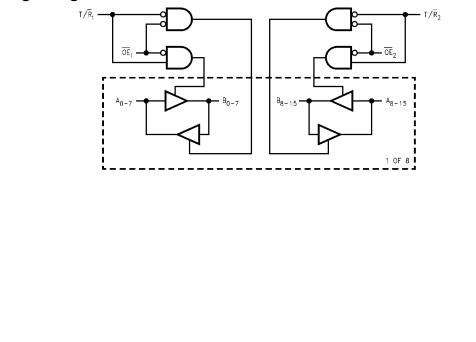

Note 1: To ensure the high-impedance state during power up or down $\overline{\text{OE}}$ should be tied to $V_{\mbox{\scriptsize CC}}$ through a pull-up resistor: the minimum value or the resistor is determined by the current-sourcing capability of the driver.

Ordering Code:

Order Number	Package Number	Package Description
74LCXR162245MEA	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [RAIL]
74LCXR162245MEX		48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide [TAPE and REEL]
74LCXR162245MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [RAIL]
74LCXR162245MTX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide [TAPE and REEL]

Devices also available in Tape and Reel. Specify by appending the suffix letter "x" to the ordering code.

Logic Symbol


Connection Diagram						
$\begin{array}{c} \text{Connection I} \\ & & \\$	Diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

Truth Tables

Inp	uts	Outputs
OE ₁	T/R ₁	
L	L	Bus B_0-B_7 Data to Bus A_0-A_7
L	Н	Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$
Н	Х	HIGH Z State on A ₀ -A ₇ , B ₀ -B ₇ (Note 2)
Inputs		Outputs
mp	uts	ouputo
	T/R ₂	Cupuo
		Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅
OE ₂	T/R ₂	

Note 2: A and B port inputs are still active

Logic Diagram

www.fairchildsemi.com

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to V _{CC} + 0.5	Output in HIGH or LOW State (Note 4)	v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
I _O	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current per Supply Pin	±100		mA
I _{GND}	DC Ground Current per Ground Pin	±100		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions (Note 5)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	v
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	v
I _{OH} /I _{OL}	Output Current	$V_{CC} = 3.0V - 3.6V$ $V_{CC} = 2.7V - 3.0V$		±12	
		$V_{CC}=2.7V-3.0V$		±8	mA
		$V_{CC} = 2.3V - 2.7V$		±4	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, $V_{IN} = 0.8V-2.0V$, $V_{CC} = 3.0V$		0	10	ns/V

Note 3: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 4: I_O Absolute Maximum Rating must be observed.

Note 5: Unused pins (Inputs or I/O's) must be held HIGH or LOW. They may not Float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Farameter	Conditions	(V)	Min	Max	onna
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		v
			2.7 - 3.6	2.0		, v
VIL	LOW Level Input Voltage		2.3 – 2.7		0.7	v
			2.7 - 3.6		0.8	Ň
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	$V_{CC} - 0.2$		
		$I_{OH} = -4 \text{ mA}$	2.3	1.8		1
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		v
		$I_{OH} = -6 \text{ mA}$	3.0	2.4		j
		$I_{OH} = -8 \text{ mA}$	2.7	2.0		1
		$I_{OH} = -12 \text{ mA}$	3.0	2.0		1
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	2.3		0.6	
		$I_{OL} = 4 \text{ mA}$	2.7		0.4	v
		$I_{OL} = 6 \text{ mA}$	3.0		0.55	Ĩ
		I _{OL} = 8 mA	2.7		0.6	
		I _{OL} = 12 mA	3.0		0.8	
lı	Input Leakage Current	$0 \le V_I \le 5.5V$	2.3 - 3.6		±5.0	μΑ
I _{OZ}	3-STATE I/O Leakage	$0 \le V_O \le 5.5V$	2.3 - 3.6		±5.0	μA
		$V_I = V_{IH}$ or V_{IL}				μΛ

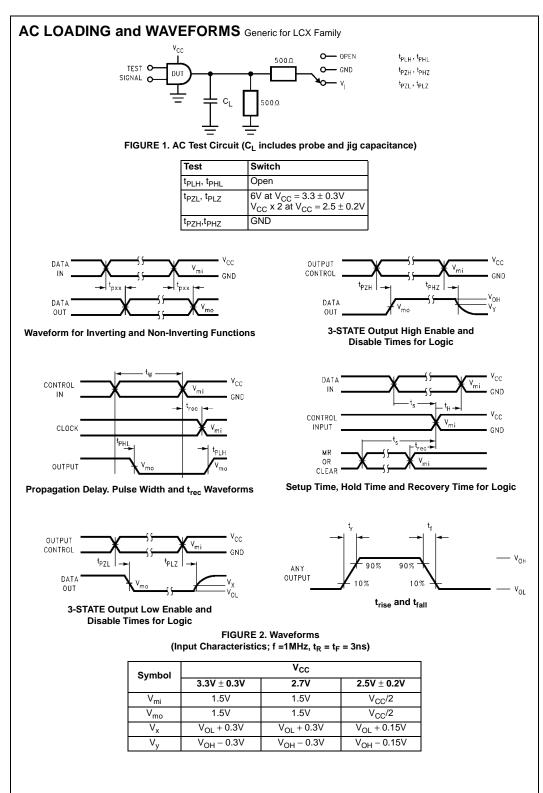
DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Symbol	Falailletei	conditions	(V)		Max	Units
I _{OFF}	Power-Off Leakage Current	$V_{I} \text{ or } V_{O} = 5.5 V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 - 3.6		20	
		$3.6V \le V_I, V_O \le 5.5V$ (Note 6)	2.3 - 3.6		±20	μA
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.3 - 3.6		500	μA

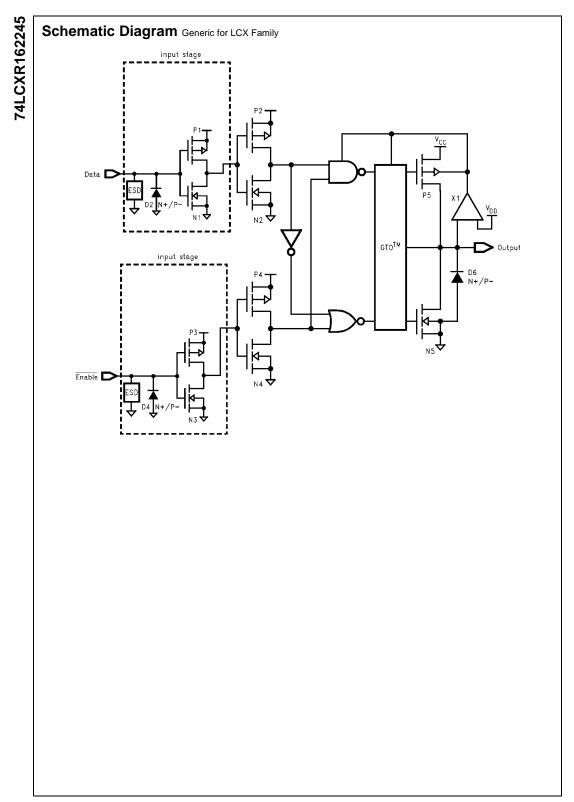
Note 6: Outputs disabled or 3-STATE only.

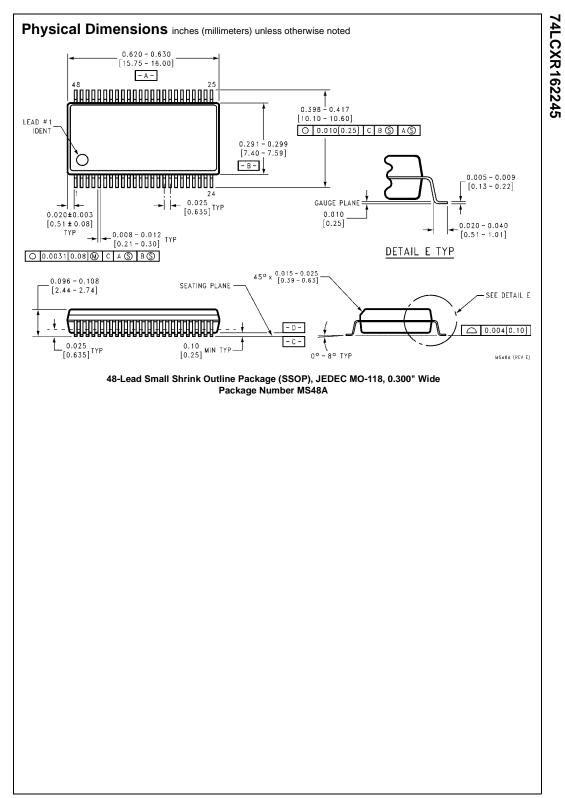
AC Electrical Characteristics

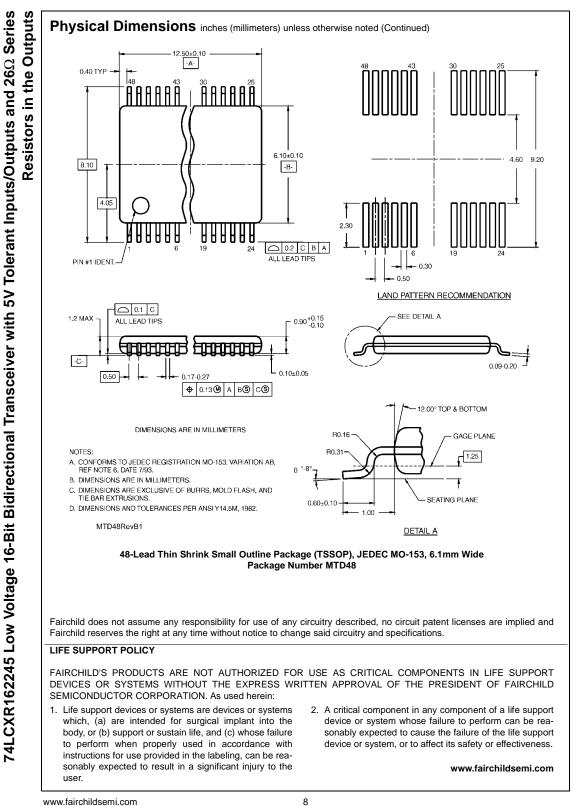
			$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$					
Symbol	Parameter	V _{CC} = 3.	$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5V \pm 0.2$ $C_L = 30 \text{ pF}$	
	Parameter	C _L =						
		Min	Max	Min	Max	Min	Max	1
t _{PHL}	Propagation Delay	1.5	5.3	1.5	6.0	1.5	6.4	
t _{PLH}	A _n to B _n or B _n to A _n	1.5	5.3	1.5	6.0	1.5	6.4	ns
t _{PZL}	Output Enable Time	1.5	7.3	1.5	8.0	1.5	9.5	
t _{PZH}		1.5	7.3	1.5	8.0	1.5	9.5	ns
t _{PLZ}	Output Disable Time	1.5	6.4	1.5	6.9	1.5	7.7	ns
t _{PHZ}		1.5	6.4	1.5	6.9	1.5	7.7	115
t _{OSHL}	Output to Output Skew (Note 7)		1.0					-
tosuu			1.0					ns


 VOSLH
 Image: Control of the state of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Dynamic Switching Characteristics


Symbol	Parameter	Conditions	V _{cc} (V)	T _A = 25°C Typical	Units
V _{OLP}	Quiet Output Dynamic Peak VOL	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.35	M
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	0.25	v
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.35	V
		$C_L = 30 \text{ pF}, \text{ V}_{IH} = 2.5 \text{V}, \text{ V}_{IL} = 0 \text{V}$	2.5	-0.25	v


Capacitance


Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10 MHz	20	pF

www.fairchildsemi.com

